Combined Shock and Vibration Isolation Through the Self-Powered, Semi-Active Control of a Magnetorheological Damper in Parallel with an Air Spring

نویسندگان

  • E. Troy Tanner
  • Daniel J. Inman
  • Harry H. Robertshaw
  • Donald J. Leo
  • Douglas K. Lindner
  • Troy Tanner
چکیده

Combining shock and vibration isolation into a single isolation system package is explored through the use of an air spring in parallel with a controlled magnetorheological fluid damper. The benefits of combining shock and vibration isolation into a single package is discussed. Modeling and control issues are investigated and test and simulation results are discussed. It is shown that this hybrid isolation system provides significantly increased performance over current state-of-the-art passive systems. Also explored is the feasibility of scavenging and storing ambient shipboard vibration energy for use in powering the isolation system. To date the literature has not adequately explored the direct design of a combined shock and vibration isolation system. As shock and vibration isolation are typically conflicting goals, the traditional approach has been to design separate shock and vibration isolation systems and operate them in parallel. This approach invariably leads to compromises in terms of the performance of both systems. Additionally, while considerable research has been performed on magnetorheological fluids and devices based on these fluids, there has been little research performed on the use of these fluids in devices that are subjected to high velocities such as the velocity seen by a ship exposed to underwater near-miss explosive events. Also missing from the literature is any research involving the scavenging and storage of ambient shipboard vibration energy. While the focus of this work is on the use of this scavenged energy to power the subject isolation system, many other uses for this energy can be envisioned. Northrop Grumman Newport News Proprietary/Sensitive Information This document contains information proprietary or sensitive to Northrop Grumman Newport News and is not to be disclosed to, copied by, or used in any manner by others without the prior express, written permission of Northrop Grumman Newport News. iii Experimental and analytical results from this research clearly show the advantages of this hybrid isolation system. Drop tests show that inputs as great as 167 g’s were reduced to 3.42 g’s above mount at 1.11 inches of deflection using a Velocity Feedback controller suggested by the author. When contrasted with typical test results with similar inputs, the subject isolation system achieved reductions in above mount accelerations of 300% and reductions in mount deflections of 200% over current state-ofthe-art passive shipboard isolation systems. Furthermore, simulations using a validated model of the isolation system suggest that this performance improvement can be achieved in multi-degree-of-freedom isolation systems as well. It was shown that above mount accelerations in the vertical and athwartship directions could be effectively limited to a predefined value, while achieving the absolute minimum mount defections, using an Acceleration Limiting Bang-Bang controller suggested by the author. Further experimentation suggests that the subject isolation system could be entirely self-powered from scavenged ambient shipboard vibration energy. An experiment using an energy scavenging and storage system consisting of a Piezoelectric Stack Generator and a bank of ultracapacitors showed that enough energy could be harvested to power the isolation system though several shock events. Northrop Grumman Newport News Proprietary/Sensitive Information This document contains information proprietary or sensitive to Northrop Grumman Newport News and is not to be disclosed to, copied by, or used in any manner by others without the prior express, written permission of Northrop Grumman Newport News.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-powered and sensing control system based on MR damper: presentation and application

A new self-powered and sensing semi-active control system based on magnetorheological (MR) damper is presented. The system includes four key parts: a rack and pinion mechanism, a linear permanent magnet DC generator, a current adjustment MR damper, and a control circuit. Numerical simulations for seismic protection of elevated bridges equipped with this system excited by two historical earthqua...

متن کامل

Study on the Self-powered Active Vibration Control

A method of active vibration control using regenerated vibration energy, i.e., the self-powered active vibration control is proposed. In this system, vibration energy is regenerated with an electric generator ,which is called energy regenerative damper, and is stored in a condenser. An actuator attains active vibration control using the energy stored in the condenser. A variable resistance is u...

متن کامل

Development of a Self-Powered Magnetorheological Damper System for Cable Vibration Control

A new self-powered magnetorheological (MR) damper control system was developed to mitigate cable vibration. The power source of the MR damper is directly harvested from vibration energy through a rotary permanent magnet direct current (DC) generator. The generator itself can also serve as an electromagnetic damper. The proposed smart passive system also incorporates a roller chain and sprocket,...

متن کامل

Semi-active vibration isolation of a quarter car model under random road excitations using Magnetorheological damper

Semi active control systems are becoming increasingly popular because they offer reliability of passive systems combined with high performance and versatility of active control systems but with low power consumptions. As Magnetorheological (MR) fluids can produce good controllable damping force under application of magnetic field, MR damper can be used as effective element in semiactive vibrati...

متن کامل

Harmonic analysis of a magnetorheological damper for vibration control

Semi-active control systems are becoming more popular because they offer both the reliability of passive systems and the versatility of active control systems without imposing heavy power demands. In particular, it has been found that magnetorheological (MR) fluids can be designed to be very effective vibration control actuators, which use MR fluids to produce controllable damping force. The ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003